lunes, 12 de enero de 2009

6-GEOMETRIA

0 comentarios









6.1 POLIEDROS . SÓLIDOS PLACTÓNICOS








Un poliedro es, en el sentido dado por la Geometría clásica al término, un cuerpo geométrico cuyas caras son planas y encierran un volumen finito.
Los poliedros se conciben como cuerpos tridimensionales, pero hay semejantes topológicos del concepto en cualquier dimensión. Así, el polígono es el semejante topológico de dos dimensiones del poliedro; y el polícoro el de cuatro dimensiones. Todas estas formas son conocidas como politopos, por lo que podemos definir un poliedro como un politopo tridimensional








SÓLIDOS PLACTÓNICOS :

Los sólidos platónicos o sólidos de Platón son poliedros regulares y convexos. Sólo existen cinco de ellos: el Tetraedro, el Cubo, el Octaedro, el Dodecaedro y el Icosaedro. El nombre del grupo proviene del hecho de que los griegos adjudicaban a estos cuerpos cada uno de los "elementos fundamentales": tierra, agua, aire y fuego, y el restante, el dodecaedro, a la divinidad. Los sólidos platónicos son el inicio del estudio de los poliedros; de estos se derivan los Sólidos de Arquímedes y los de Kepler-Poinsot, que a su vez siguen generando más familias.






6.2 FRACTALES



Un fractal es un objeto semi geométrico cuya estructura básica, fragmentada o irregular, se repite a diferentes escalas. El término fue propuesto por el matemático Benoît Mandelbrot en 1975 y deriva del Latín fractus, que significa quebrado o fracturado. Muchas estructuras naturales son de tipo fractal.
A un objeto geométrico fractal se le atribuyen las siguientes características
Es demasiado irregular para ser descrito en términos geométricos tradicionales.
Posee detalle a cualquier escala de observación.
Es autosimilar(exacta, aproximada o estadística).
Su dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.
Se define mediante un simple algoritmo recursivo.
No nos basta con una sola de estas características para definir un fractal. Por ejemplo, la recta real no se considera un fractal, pues a pesar de ser un objeto autosimilar carece del resto de características exigidas.
Un fractal natural es un elemento de la naturaleza que puede ser descrito mediante la geometría fractal. Las nubes, las montañas, el sistema circulatorio, las líneas costeras o los copos de nieve son fractales naturales



8-MATEMATICAS & ARTE

1 comentarios
8.1 ESCHER

-Maurits Cornelis Escher, más conocido como M. C. Escher (Leeuwarden Países Bajos, 17 de junio de 1898 - Baarn Holanda, 27 de marzo de 1972), artista holandés, conocido por sus grabados en madera, xilografías y litografías que tratan sobre figuras imposibles, teselaciones y mundos imaginarios.
Su obra experimenta con diversos métodos de representar (en dibujos de 2 ó 3 dimensiones) espacios paradójicos que desafían a los modos habituales de representación.


8.2 - RÓDCHENKO

-Ródchenko nació en San Petersburgo, su familia se mudó a Kazan en 1902 y estudió en la Escuela de Arte de Kazán, donde impartían clase Nikolái Vesnín y Georgi Medvédev, y en el Instituto Stróganov en Moscú. Él hizo sus primeros dibujos abstractos, influido por el Suprematismo de Kasimir Malevich, en 1915.


8.3 - MOSAICOS Y TESELACIONES

Una pieza es teselante cuando es posible acoplarla entre sí con otras idénticas a ella sin huecos ni fisuras hasta recubrir por completo el plano. La configuración que en tal caso se obtiene recibe el nombre de mosaico o teselación.

Las teselaciones han sido utilizadas en todo el mundo desde los tiempo más antiguos para recubrir suelos y paredes, e igualmente como motivos decorativos de muebles, alfombras, tapices, etc... El artista holandés M.C. Escher se divirtió teselando el plano con figuras de distintas formas, que recuerdan pájaros, peces, animales....

SIMETRIA

La simetría es un rasgo característico de formas geométricas, sistema, ecuaciones, y otros objetos materiales o entidades abstractas.

8.4 FOTOGRAFIA MATEMÁTICA : PETALO NAZARI




PAJARITA NAZARI


HUESO NAZARI


ALHAMBRA

Followers

 

My Blog List

Welcome

Taller De Matematicas Copyright 2008 Shoppaholic Designed by Ipiet Templates Image by Tadpole's Notez